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Set-up

X denotes a complete separable metric space
A denotes the Borel sigma-algebra, i.e, the the sigma-algebra
generated by the open sets in X
µ is a Borel probability measure
f : X → X a measurable function
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Ergodicity

Definition
The measure µ is said to be f−invaraint if for every measurable set
E ⊆ X , we have µ(f−1(E)) = µ(E).

Example 1

The Lebesgue measure on S1 = R/Z is invariant under f : S1 → S2

defined by f (x) = x + α (mod 1), for every real α.

Example 2
Consider X = [0,1] and define

f (x) =

{
0, x = 0
1
x mod 1, x ∈ (0,1],

for E ⊆ I, µ(E) :=
1

log2

∫
E

1
1 + x

dx
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Ergodicity

f−1(a,b) =
∞⋃

n=1

(
1

n + b
,

1
n + a

)
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Ergodicity

Fun Exercise
Compute all Lebesgue-volume preserving smooth maps f : Rn → Rn

explicitly:
Det(∇f ) = ±1.

Definition
The measure µ is Ergodic with respect to f if for every measurable set
E ⊆ X with f−1(E) = E ⇒ µ(E) = 0 or 1.

Example 1

f : [0,1]→ [0,1] define by f (x) = x2. The Dirac delta δ0 is ergodic.

Theorem, Example 2
For each irrational α, the Lebesgue measure is the unique ergodic and
invariant measure under f : S1 → S1 defined by f (x) = x + α (mod 1).

Why Ergodicity?
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Ergodicity

Theorem[Birkhoff, 1931]
Let µ be an f–invariant ergodic probability measure. For every
φ ∈ L1(µ) we have

lim
n→∞

1
n

Σn−1
i=0 φ(f i(x)) =

∫
X
φdµ,

for µ-almost every x ∈ X .

Remark
Take φ = 1E , for a measurable set E , we have

lim
n→∞

1
n
]{0 ≤ i ≤ n − 1 : f i(x) ∈ E} = lim

n→∞

1
n

Σn−1
i=0 1E (f i(x)) = µ(E),

for µ-almost every x ∈ X .
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Motivation for Ergodic decomposition

Assume µ is not f -ergodic. Choose E such that 0 < µ(E) < 1 and
f−1(E) = E . Then f−1(Ec) = Ec and 0 < µ(Ec) < 1. So we can
decompose (f , µ) into systems (f |E , µE ) and (f |cE , µEc ), where

µE (.) =
µ(E ∩ (.))

µ(E)

and similarly uc
E is defined. Observe that

µ = µ(E)µE + µ(Ec)µEc .
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Ergodic decomposition

Question 1
Given a partition P of X into measurable subsets: Is it possible to
“disintegrate” µ into “conditional” measures on the elements of the
partition P?

Question 2
Assume (f , µ) is invariant but not ergodic. Does there exist a partition
P which “disintegrate” µ into “conditional” measures {µP : P ∈ P} such
that each (f , µP) is invariant and ergodic?
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Quotient Measure

Definition (Quotient sigma-algebra)
Let (X ,A, µ) be a Borel probability space and P be a partition of X into
measure subsets. Consider the map τ : X → P x → P(x) ∈ P. Define
the sigma-algebra C on P as

For A ⊆ P,A ∈ C ⇔ τ−1A ∈ A.

Definition (Quotient Measure)
The quotient measure on P is the probability measure µ̂ : C → [0,1]
defined by

µ̂(A) = µ(τ−1A) for all A ∈ C.
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Definition (Decomposition of a Measure)
Let (X ,A, µ) be a probability space and let P be a partition of X . A
family of probability measures {µP : P ∈ P} on X is said to decompose
µ w.r.t P if the following hold:

1 µP(P) = 1 for µ̂–almost every P ∈ P.
2 For every measurable subset E of X , the map P → µP(E) is

measurable.
3 For every measurable subset E of X , µ(E) =

∫
P
µP(E) d µ̂(P).

Definition (Ergodic Decomposition)
Let µ be f–invariant. An ergodic decomposition of of µ w.r.t the partition
P is a decomposition of µ into probability measures {µP : P ∈ P} on X ,
where µ̂–almost every µP is invariant and ergodic.
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Example for existence of decomposition

T 2 = S1 × S1, endowed with the Lebesgue measure m and take
P = {x × S1 : x ∈ S1}.
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Example for existence of decomposition

Let m̂ be the Lebesgue measure on S1 and mx be the Lebesgue
measure on the fiber x × S1 measuring arc length. By the Fubini’s
theorem we have

m(A) =

∫
S1×S1

χA d(m̂ × m̂)

=

∫
S1

( ∫
S1
χA dm̂(y)

)
dm̂(x)

=

∫
S1

mx (A) dm̂(x),

for every measurable set E . This proves that {mx : x ∈ S1}
disintegrates m w.r.t P.
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Example for non-existence of decomposition

Let X = S1 with Lebesgue measure m. Let f : S1 → S1 be an irrational
rotation.

claim
W.r.t the partition into orbits by f , P =

{
Px = {f n(x)}n∈Z : x ∈ S1},

there does not exist any disintegration of m .

We prove that if
{
µPx : Px ∈ P

}
is a decomposition, then the family of

the pull-backs {
f?µPx (.) = µPx (f−1(.)) : Px ∈ P

}
is a also a decomposition of m.
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Example for non-existence of decomposition

Theorem (Uniqueness of decomposition)
Let (Y ,C, µ) be a probability space and suppose that the
sigma-algebra C has a countable generator. If {µP : P ∈ P} and
{µ́P : P ∈ P} are two disintegrations of µ w.r.t a partition P of Y , then
µ́P = µP for µ̂-almost every P ∈ P.

Proof of the claim
µPx (Px ) = 1 for µ̂–almost every Px ∈ P implies
f?µPx (Px ) = µPx (f−1(Px )) = µPx (Px ) = 1 for µ̂–almost every Px ∈ P.

For every measurable subset E of Y , the map Px → µPx (E) is
measurable implies Px → f?µPx (E) is measurable.
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Example for non-existence of decomposition

By the invariance of m we have∫
P
f?µPx (E) d µ̂(P) =

∫
P
µPx (f−1(E)) d µ̂(P) = m(f−1(E)) = m(E)

So
{

f?µPx : Px ∈ P
}

is also disintegration of m w.r.t P. By the
uniqueness theorem above, we have f?µPx = µPx for µ̂–almost every
Px ∈ P. Thus µPx is f -invariant for µ̂–almost every Px ∈ P.

The Lebesgue measure m is the only invariant measure⇒ µPx = m for
µ̂–almost every Px ∈ P but m(Px ) = 0 and µPx (Px ) = 1. ⇒⇐

So P =
{

Px = {f n(x)}n∈Z : x ∈ S1} does not disintegrate m. Q.E.D
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Example for ergodic decomposition

Take X = [0,1] and define f : X → X by f (x) = x2. Consider the
partition

P = {P1 = {0},P2 = {1},P3 = (0,1)}.

Claim: {µP1 = δ0, µP2 = δ1} is the ergodic decomposition of every
f−invariant Borel probability measure µ on X .

Proof of the claim
(1) For 0 < ε < 1, by invariance we have µ([0, εn]) = µ([0, ε]) for all

n ∈ N.
(2) By the continuity of µ we have µ({0}) = µ([0, ε]) which means

µ((0, ε]) = 0.
(3) Take ε = 1− 1/2n, we have µ((0,1− 1/2n]) = 0 for all n ∈ N. By

the continuity of µ we get µ((0,1)) = 0.
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Proof of the claim
(4) Therefor µ({0}, {1}) = 1. Since µ̂(0,1) = 0, the family
{µP1 = δ0, µP2 = δ1} disintegrates every invariant Borel probability
measure µ,

(5) i.e, µ = µ{0}δ0 + µ{1}δ1. Q.E.D

Question
Under which conditions a partition P decomposes a given measure µ?

V. A. Rohlin, 1947
On the Fundamental Ideas of Measure Theory, American
Mathematical Society, 1952.
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Measurable Partitions

Definition (refinement)
Let P1,P2 be two partitions of a set Y . We say P2 is a refinement of P1
if each P ∈ P1 is a union of elements of Q ∈ P2. We write P1 � P2
when P2 is a refinement of P1.

Definition (Measurable Partitions)
Let (Y , C, µ) be a probability space. A partition P of Y is measurable
w.r.t µ if and only if ∃ a set Y0 ⊆ Y with µ(Y0) = 1 and a sequence of
countable partitions Pn, each consisting of measurable sets, such that
Pn � Pn+1 for all n ∈ N and

P |Y0=
{ ⋂

n∈N

Pn : Pn ∈ Pn∀ n ∈ N
}
.
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Rokhlin disintegration theorem

Rokhlin disintegration theorem
Let (X ,A, µ) be a Borel probability space and P be a partition of X .
There exists a disintegration of µ with respect to P if P measurable with
respect to µ.

For P ∈ P, choose a sequence Pn ∈ Pn such P =
⋂

n∈N Pn. The limit

µP(.) = lim
n→∞

µ(Pn ∩ (.))

µ(Pn)
.

exists and is defined to be the conditional measure µP .

Shah Faisal Ergodic Decomposition



Example of measurable partition

X = S1 × S1 with Lebesgue measure

P = {x × S1 : x ∈ S1}

Pn = {J(i ,n)× S1 : i = 1,2,3, . . . ,2n}, where J(i ,n) = [
i − 1
2n ,

i
2n ).
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A non-measurable partition

Definition
Let M be a compact Riemannian manifold. A diffeomorphism
f : M → M is called Anosov diffeomorphism if there exist c > 0 and
0 < λ < 1 such that for every z ∈ M,

TzM = Es
z
⊕

Eu
z ,

Df (z)(Es
z ) = Es

f (z) and Df (z)(Eu
z ) = Eu

f (z),

‖Df (z)n(v)‖ ≤ cλn‖v‖ ∀ v ∈ Es
z ,

‖Df (z)−n(v)|‖ ≤ cλn‖v‖ ∀ v ∈ Eu
z .

Theorem, D. Anosov
Every C2 measure-preserving Anosov diffeomorphism is ergodic.
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A non-measurable partition

Open Problem 1

Is the theorem true for C1 Anosov diffeomorphism?

Open Problem 2
Classify manifolds that admits Anosov diffeomorphism and that don’t....

A non-measurable partition

T 2 = R2/Z 2 with Lebesgue measure m and the Anosov
diffeomorphsim f : T 2 → T 2 defined by(

2 1
1 1

)
mod 1.

The P = {Wu(x) : x ∈ T 2} into the unstable manifolds is not
measurable w.r.t m.
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Proof sketch

Assume P is measurable w.r.t m. TakeWu(x) ∈ P, there exists a
sequence Pn ∈ Pn such thatWu(x) = ∩n∈NPn.

Pn ∈ Pn is a union of unstable manifolds and hence invariant under f ,
i.e, f−1(Pn) = Pn.

m is invariant under f and f is C2, so by the above theorem of Anosov
m is ergodic. By ergodicity either m(Pn) = 1 or 0. But Pn is a partition
of T , so for each n ∈ N, there exists Pn ∈ Pn such that µ(Pn) = 1

Wu(x) = ∩n∈NPn has full lebesgue measure which is absurd since
W u(x) a one dimensional object (P is a 1-dimensional foliation).
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Ergodic decomposition theorem

Question 2
Assume (f , µ) is invariant but not ergodic. Does there exist a partition
P which “disintegrate” µ into “conditional” measures {µP : P ∈ P} such
that each (f , µP) is invariant and ergodic?

Theorem
Let f : X → X be a measurable map and µ be an f -invariant probably
measure. The following are equivalent:

µ is ergodic.
For every measurable set A ⊆ X the function τ(.,A) : X → R
defined by

τ(x ,A) = lim
n→∞

1
n ]{0 ≤ i ≤ n − 1 : f i(x) ∈ A}

is constant at µ-almost every point of X .
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Ergodic decomposition theorem

Definition (Dynamical Partition)

Let (X , Â, µ) be a Borel probability space, and and f : X → X a
measurable transformation. Define an equivalence relation on X as

x v y ⇔ τ(x ,A) = τ(y ,A) for every A ∈ A.

The dynamical partition Pf of X with respect to f is the partition into
equivalence classes defined by the equivalence relation above.

Ergodic decomposition theorem
The dynamical Partition Pf above is measurable w.r.t µ and the Rokhlin
disintegration {µP : P ∈ Pf} of µ is the ergodic decomposition of µ if µ
is f -invariant.
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Computing the ergodic decomposition

Example

Take X = S1 × S1 with the Lebesgue measure m. Define f : T2 → T2

by
f (x , y) = (x , y + x) mod 1 .

claim
The dynamical Partition Pf of T2 is the vertical fibers, i.e,

P = {x × S1 : x ∈ S1}.

Shah Faisal Ergodic Decomposition



Computing ergodic decomposition
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The End
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