What is an ergodic decomposition of invariant measures?

Shah Faisal

Berlin Mathematical School, HU, Berlin

faisal@math.hu-berlin.de

June 5, 2020

Shah Faisal Ergodic Decomposition

・ 同 ト ・ ヨ ト ・ ヨ ト ・

크

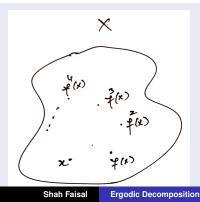
- What is Ergodicity?
- What does it mean to disintegration a measure w.r.t a partition?
- What is an ergodic decomposition of a measure w.r.t a dynamical system?
- When does an ergodic decomposition of a measure w.r.t a given dynamical system exist?
 - Measurable Partitions
 - Rokhlin disintegration theorem
 - An application of Rokhlin disintegration theorem to ergodic decomposition

< 回 > < 回 > < 回 > -

크

Set-up

- X denotes a complete separable metric space
- *A* denotes the Borel sigma-algebra, i.e, the the sigma-algebra generated by the open sets in *X*
- μ is a Borel probability measure
- $f: X \rightarrow X$ a measurable function



Ergodicity

Definition

The measure μ is said to be *f*-invariant if for every measurable set $E \subseteq X$, we have $\mu(f^{-1}(E)) = \mu(E)$.

Example 1

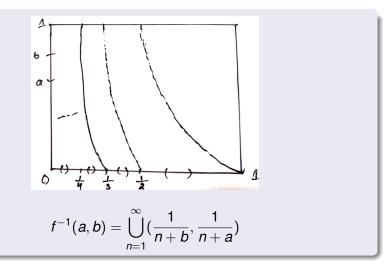
The Lebesgue measure on $S^1 = R/Z$ is invariant under $f : S^1 \to S^2$ defined by $f(x) = x + \alpha \pmod{1}$, for every real α .

Example 2

Consider X = [0, 1] and define

$$f(x) = \begin{cases} 0, & x = 0\\ \frac{1}{x} \mod 1, & x \in (0, 1], \end{cases}$$

for $E \subseteq I, \mu(E) := \frac{1}{\log 2} \int_E \frac{1}{1 + x} dx$



Ergodicity

Fun Exercise

Compute all Lebesgue-volume preserving smooth maps $f : \mathbb{R}^n \to \mathbb{R}^n$ explicitly:

$$Det(\nabla f) = \pm 1.$$

Definition

The measure μ is Ergodic with respect to *f* if for every measurable set $E \subseteq X$ with $f^{-1}(E) = E \Rightarrow \mu(E) = 0$ or 1.

Example 1

 $f: [0,1] \rightarrow [0,1]$ define by $f(x) = x^2$. The Dirac delta δ_0 is ergodic.

Theorem, Example 2

For each irrational α , the Lebesgue measure is the unique ergodic and invariant measure under $f : S^1 \to S^1$ defined by $f(x) = x + \alpha \pmod{1}$.

Theorem[Birkhoff, 1931]

Let μ be an f–invariant ergodic probability measure. For every $\phi \in L^1(\mu)$ we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\phi(f^i(x))=\int_X\phi d\mu,$$

for μ -almost every $x \in X$.

Remark

Take $\phi = \mathbf{1}_E$, for a measurable set *E*, we have

$$\lim_{n\to\infty}\frac{1}{n}\sharp\{0\leq i\leq n-1:f^i(x)\in E\}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mathbb{1}_E(f^i(x))=\mu(E),$$

for μ -almost every $x \in X$.

・日・ ・ ヨ ・ ・

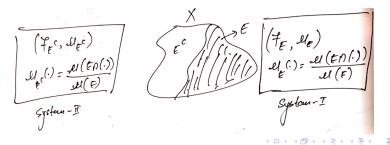
Motivation for Ergodic decomposition

Assume μ is not *f*-ergodic. Choose *E* such that $0 < \mu(E) < 1$ and $f^{-1}(E) = E$. Then $f^{-1}(E^c) = E^c$ and $0 < \mu(E^c) < 1$. So we can decompose (f, μ) into systems $(f|_E, \mu_E)$ and $(f|_E^c, \mu_{E^c})$, where

$$\mu_{\mathsf{E}}(.) = \frac{\mu(\mathsf{E} \cap (.))}{\mu(\mathsf{E})}$$

and similarly u_F^c is defined. Observe that

 $\mu = \mu(\boldsymbol{E})\mu_{\boldsymbol{E}} + \mu(\boldsymbol{E}^{\boldsymbol{c}})\mu_{\boldsymbol{E}^{\boldsymbol{c}}}.$



Question 1

Given a partition \mathbb{P} of X into measurable subsets: Is it possible to "disintegrate" μ into "conditional" measures on the elements of the partition \mathbb{P} ?

Question 2

Assume (f, μ) is invariant but not ergodic. Does there exist a partition \mathbb{P} which "disintegrate" μ into "conditional" measures $\{\mu_P : P \in \mathbb{P}\}$ such that each (f, μ_P) is invariant and ergodic?

(日)

Definition (Quotient sigma-algebra)

Let (X, \mathcal{A}, μ) be a Borel probability space and \mathbb{P} be a partition of X into measure subsets. Consider the map $\tau : X \to \mathbb{P} x \to P(x) \in \mathbb{P}$. Define the sigma-algebra \mathcal{C} on \mathbb{P} as

For
$$A \subseteq \mathbb{P}, A \in \mathcal{C} \Leftrightarrow \tau^{-1}A \in \mathcal{A}$$
.

Definition (Quotient Measure)

The quotient measure on \mathbb{P} is the probability measure $\widehat{\mu} : \mathcal{C} \to [0, 1]$ defined by

$$\widehat{\mu}(A) = \mu(\tau^{-1}A)$$
 for all $A \in C$.

<日</th>

2

Definition (Decomposition of a Measure)

Let (X, \mathcal{A}, μ) be a probability space and let \mathbb{P} be a partition of X. A family of probability measures $\{\mu_P : P \in \mathbb{P}\}$ on X is said to decompose μ w.r.t \mathbb{P} if the following hold:

- $\mu_P(P) = 1$ for $\widehat{\mu}$ -almost every $P \in \mathbb{P}$.
- ② For every measurable subset *E* of *X*, the map *P* → $\mu_P(E)$ is measurable.

So For every measurable subset *E* of *X*, $\mu(E) = \int_{\mathbb{P}} \mu_P(E) d\hat{\mu}(P)$.

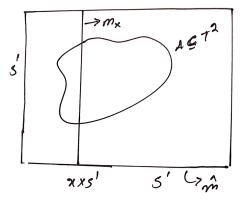
Definition (Ergodic Decomposition)

Let μ be f–invariant. An ergodic decomposition of of μ w.r.t the partition \mathbb{P} is a decomposition of μ into probability measures $\{\mu_P : P \in \mathbb{P}\}$ on X, where $\hat{\mu}$ –almost every μ_P is invariant and ergodic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example for existence of decomposition

 $T^2 = S^1 \times S^1$, endowed with the Lebesgue measure *m* and take $\mathbb{P} = \{x \times S^1 : x \in S^1\}.$



르

Let \widehat{m} be the Lebesgue measure on S^1 and m_x be the Lebesgue measure on the fiber $x \times S^1$ measuring arc length. By the Fubini's theorem we have

$$m(A) = \int_{S^1 \times S^1} \chi_A \ d(\widehat{m} \times \widehat{m})$$

= $\int_{S^1} \left(\int_{S^1} \chi_A \ d\widehat{m}(y) \right) \ d\widehat{m}(x)$
= $\int_{S^1} m_x(A) \ d\widehat{m}(x),$

for every measurable set *E*. This proves that $\{m_x : x \in S^1\}$ disintegrates *m* w.r.t \mathbb{P} .

Let $X = S^1$ with Lebesgue measure *m*. Let $f : S^1 \to S^1$ be an irrational rotation.

claim

W.r.t the partition into orbits by f, $\mathbb{P} = \{P_x = \{f^n(x)\}_{n \in \mathbb{Z}} : x \in S^1\}$, there does not exist any disintegration of m.

We prove that if $\{\mu_{P_x} : P_x \in \mathbb{P}\}$ is a decomposition, then the family of the pull-backs

$$\{f_{\star}\mu_{P_{X}}(.) = \mu_{P_{X}}(f^{-1}(.)) : P_{X} \in \mathbb{P}\}$$

is a also a decomposition of *m*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Uniqueness of decomposition)

Let (Y, C, μ) be a probability space and suppose that the sigma-algebra *C* has a countable generator. If $\{\mu_P : P \in \mathbb{P}\}$ and $\{\mu_P : P \in \mathbb{P}\}$ are two disintegrations of μ w.r.t a partition \mathbb{P} of *Y*, then $\mu_P = \mu_P$ for $\hat{\mu}$ -almost every $P \in \mathbb{P}$.

Proof of the claim

- $\mu_{P_x}(P_x) = 1$ for $\hat{\mu}$ -almost every $P_x \in \mathbb{P}$ implies $f_*\mu_{P_x}(P_x) = \mu_{P_x}(f^{-1}(P_x)) = \mu_{P_x}(P_x) = 1$ for $\hat{\mu}$ -almost every $P_x \in \mathbb{P}$.
- For every measurable subset *E* of *Y*, the map $P_x \to \mu_{P_x}(E)$ is measurable implies $P_x \to f_* \mu_{P_x}(E)$ is measurable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Example for non-existence of decomposition

• By the invariance of *m* we have

$$\int_{\mathbb{P}} f_{\star} \mu_{P_{\star}}(E) \ d\widehat{\mu}(P) = \int_{\mathbb{P}} \mu_{P_{\star}}(f^{-1}(E)) \ d\widehat{\mu}(P) = m(f^{-1}(E)) = m(E)$$

So $\{f_*\mu_{P_x} : P_x \in \mathbb{P}\}\$ is also disintegration of m w.r.t \mathbb{P} . By the uniqueness theorem above, we have $f_*\mu_{P_x} = \mu_{P_x}$ for $\hat{\mu}$ -almost every $P_x \in \mathbb{P}$. Thus μ_{P_x} is f-invariant for $\hat{\mu}$ -almost every $P_x \in \mathbb{P}$.

The Lebesgue measure *m* is the only invariant measure $\Rightarrow \mu_{P_x} = m$ for $\hat{\mu}$ -almost every $P_x \in \mathbb{P}$ but $m(P_x) = 0$ and $\mu_{P_x}(P_x) = 1$. $\Rightarrow \Leftarrow$

So
$$\mathbb{P} = \{ P_x = \{ f^n(x) \}_{n \in \mathbb{Z}} : x \in S^1 \}$$
 does not disintegrate *m*. Q.E.D

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Take X = [0, 1] and define $f : X \to X$ by $f(x) = x^2$. Consider the partition

$$\mathbb{P} = \{ P_1 = \{ 0 \}, P_2 = \{ 1 \}, P_3 = (0, 1) \}.$$

Claim: { $\mu_{P_1} = \delta_0, \mu_{P_2} = \delta_1$ } is the ergodic decomposition of every *f*-invariant Borel probability measure μ on *X*.

Proof of the claim

- (1) For $0 < \epsilon < 1$, by invariance we have $\mu([0, \epsilon^n]) = \mu([0, \epsilon])$ for all $n \in N$.
- (2) By the continuity of μ we have $\mu(\{0\}) = \mu([0, \epsilon])$ which means $\mu((0, \epsilon]) = 0$.
- (3) Take $\epsilon = 1 1/2n$, we have $\mu((0, 1 1/2n]) = 0$ for all $n \in N$. By the continuity of μ we get $\mu((0, 1)) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Proof of the claim

(4) Therefor $\mu(\{0\}, \{1\}) = 1$. Since $\hat{\mu}(0, 1) = 0$, the family $\{\mu_{P_1} = \delta_0, \mu_{P_2} = \delta_1\}$ disintegrates every invariant Borel probability measure μ ,

(5) i.e,
$$\mu = \mu\{0\}\delta_0 + \mu\{1\}\delta_1$$
. Q.E.D

Question

Under which conditions a partition \mathbb{P} decomposes a given measure μ ?

V. A. Rohlin, 1947

On the Fundamental Ideas of Measure Theory, American Mathematical Society, 1952.

(日) (圖) (E) (E) (E)

Definition (refinement)

Let $\mathbb{P}_1, \mathbb{P}_2$ be two partitions of a set Y. We say \mathbb{P}_2 is a refinement of \mathbb{P}_1 if each $P \in \mathbb{P}_1$ is a union of elements of $Q \in \mathbb{P}_2$. We write $\mathbb{P}_1 \preceq \mathbb{P}_2$ when \mathbb{P}_2 is a refinement of \mathbb{P}_1 .

Definition (Measurable Partitions)

Let (Y, C, μ) be a probability space. A partition \mathbb{P} of Y is measurable w.r.t μ if and only if \exists a set $Y_0 \subseteq Y$ with $\mu(Y_0) = 1$ and a sequence of countable partitions \mathbb{P}_n , each consisting of measurable sets, such that $\mathbb{P}_n \preceq \mathbb{P}_{n+1}$ for all $n \in N$ and

$$\mathbb{P}\mid_{Y_0}=\Big\{\bigcap_{n\in N}P_n:P_n\in\mathbb{P}_n\forall\ n\in N\Big\}.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Rokhlin disintegration theorem

Let (X, \mathcal{A}, μ) be a Borel probability space and \mathbb{P} be a partition of X. There exists a disintegration of μ with respect to \mathbb{P} if \mathbb{P} measurable with respect to μ .

For $P \in \mathbb{P}$, choose a sequence $P_n \in \mathbb{P}_n$ such $P = \bigcap_{n \in N} P_n$. The limit

$$\mu_{\mathcal{P}}(.) = \lim_{n \to \infty} \frac{\mu(\mathcal{P}_n \cap (.))}{\mu(\mathcal{P}_n)}.$$

exists and is defined to be the conditional measure μ_P .

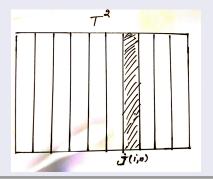
< □ > < □ > < □ >

Example of measurable partition

 $X = S^1 \times S^1$ with Lebesgue measure

$$\mathbb{P} = \{x \times S^1 : x \in S^1\}$$

 $\mathbb{P}_n = \{J(i, n) \times S^1 : i = 1, 2, 3, ..., 2^n\}, \text{ where } J(i, n) = [\frac{i-1}{2^n}, \frac{i}{2^n}].$



Shah Faisal Ergodic Decomposition

Definition

Let *M* be a compact Riemannian manifold. A diffeomorphism

- $f: M \rightarrow M$ is called Anosov diffeomorphism if there exist c > 0 and
- $0 < \lambda < 1$ such that for every $z \in M$,
 - $T_z M = E_z^s \bigoplus E_z^u$,
 - $Df(z)(E_z^s) = E_{f(z)}^s$ and $Df(z)(E_z^u) = E_{f(z)}^u$,
 - $\|Df(z)^n(v)\| \leq c\lambda^n \|v\| \quad \forall \ v \in E_z^s$,
 - $\|Df(z)^{-n}(v)\| \leq c\lambda^n \|v\| \forall v \in E_z^u$.

Theorem, D. Anosov

Every C^2 measure-preserving Anosov diffeomorphism is ergodic.

(日)

A non-measurable partition

Open Problem 1

Is the theorem true for C^1 Anosov diffeomorphism?

Open Problem 2

Classify manifolds that admits Anosov diffeomorphism and that don't....

A non-measurable partition

 $T^2 = R^2/Z^2$ with Lebesgue measure *m* and the Anosov diffeomorphsim $f: T^2 \rightarrow T^2$ defined by

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right) \mod 1.$$

The $\mathbb{P} = \{\mathcal{W}^u(x) : x \in T^2\}$ into the unstable manifolds is not measurable w.r.t *m*.

Proof sketch

- Assume \mathbb{P} is measurable w.r.t m. Take $\mathcal{W}^{u}(x) \in \mathbb{P}$, there exists a sequence $P_n \in \mathbb{P}_n$ such that $\mathcal{W}^{u}(x) = \bigcap_{n \in N} P_n$.
- $P_n \in \mathbb{P}_n$ is a union of unstable manifolds and hence invariant under f, i.e, $f^{-1}(P_n) = P_n$.
- *m* is invariant under *f* and *f* is C^2 , so by the above theorem of Anosov *m* is ergodic. By ergodicity either $m(P_n) = 1$ or 0. But \mathbb{P}_n is a partition of *T*, so for each $n \in N$, there exists $P_n \in \mathbb{P}_n$ such that $\mu(P_n) = 1$

• $\mathcal{W}^{u}(x) = \bigcap_{n \in N} P_n$ has full lebesgue measure which is absurd since $W^{u}(x)$ a one dimensional object (\mathbb{P} is a 1-dimensional foliation).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Question 2

Assume (f, μ) is invariant but not ergodic. Does there exist a partition \mathbb{P} which "disintegrate" μ into "conditional" measures $\{\mu_P : P \in \mathbb{P}\}$ such that each (f, μ_P) is invariant and ergodic?

Theorem

Let $f : X \to X$ be a measurable map and μ be an *f*-invariant probably measure. The following are equivalent:

- μ is ergodic.
- For every measurable set A ⊆ X the function τ(., A) : X → R defined by

$$\tau(\mathbf{X}, \mathbf{A}) = \lim_{n \to \infty} \frac{1}{n} \sharp \{ \mathbf{0} \le i \le n - 1 : f^i(\mathbf{X}) \in \mathbf{A} \}$$

is constant at μ -almost every point of X.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Definition (Dynamical Partition)

Let (X, \widehat{A}, μ) be a Borel probability space, and and $f : X \to X$ a measurable transformation. Define an equivalence relation on X as

$$oldsymbol{x} \backsim oldsymbol{y} \Leftrightarrow au(oldsymbol{x},oldsymbol{A}) = au(oldsymbol{y},oldsymbol{A})$$
 for every $oldsymbol{A} \in \mathcal{A}.$

The dynamical partition \mathbb{P}_f of X with respect to f is the partition into equivalence classes defined by the equivalence relation above.

Ergodic decomposition theorem

The dynamical Partition \mathbb{P}_f above is measurable w.r.t μ and the Rokhlin disintegration $\{\mu_P : P \in \mathbb{P}_f\}$ of μ is the ergodic decomposition of μ if μ is *f*-invariant.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Example

Take $X = S^1 \times S^1$ with the Lebesgue measure *m*. Define $f : \mathbb{T}^2 \to \mathbb{T}^2$ by

$$f(x, y) = (x, y + x) \mod 1$$
.

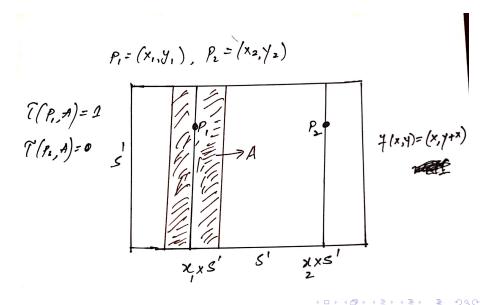
claim

The dynamical Partition \mathbb{P}_f of \mathbb{T}^2 is the vertical fibers, i.e,

$$\mathbb{P} = \{ x \times S^1 : x \in S^1 \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Computing ergodic decomposition



The End

Shah Faisal Ergodic Decomposition

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

-

Shah Faisal (2019)

Ergodic Decomposition, with Sakshi Jain.

to appear in Indagationes Mathematicae.

M. Brin, G. Stuck (2002)

Introduction to Dynamical Systems

Cambridge: Cambridge University Press.

▲□ → ▲ □ → ▲ □ → □

크