In algebraic geometry, the Chow ring (named after W. L. Chow by Chevalley (1958)) of a smooth algebraic variety over a field is an algebro-geometric analogue of the cohomology ring of a complex variety considered as a topological space. The elements of the Chow ring are formed out of actual subvarieties (so-called algebraic cycles), and the multiplicative structure is derived from the intersection of subvarieties. In this talk, we will define what is a Chow ring, introduce basic properties and see a few examples if time permits.